Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Chinese Journal of Integrated Traditional and Western Medicine ; (12): 1359-1364, 2014.
Article in Chinese | WPRIM | ID: wpr-313022

ABSTRACT

<p><b>OBJECTIVE</b>To observe the effect of Modified Zuoguiwan (MZ) on the balance between helper T cell subsets 17 (Th17) and regulatory T cell subsets (Treg) in estrogen deficiency induced bone loss mice and to explore its mechanism.</p><p><b>METHODS</b>Totally 50 BALB/c mice were divided into the sham-operation group, the ovariectomy model group, the low dose MZ group, the middle dose MZ group, and the high dose MZ group by random digit table, 10 in each group. Mice in the low, middle, and high dose MZ groups were respectively administered with MZ at the daily dose of 7.25, 14.50, and 29.00 g/kg by gastrogavage, 0.5 mL each time for 12 successive weeks. Meanwhile, mice in the sham-operation group and the ovariectomy model group were administered with equal volume by gastrogavage, 0.50 mL each time. The serum estradiol (E2) level was assessed by enzyme linked immunosorbent assay (ELISA). Bone mineral density (BMD) of thigh bone was measured with dual energy X ray absorptiometry. In addition, the population of Th17/Treg subsets in spleen mononuclear cells was analyzed by extracellular and intracellular staining method using flow cytometry. Moreover, the mRNA expression of IL-17A and TGF-β in the spleen mononuclear cells was detected by reverse transcription polymerase chain reaction (RT-PCR).</p><p><b>RESULTS</b>Compared with the sham-operation group, both E2 and BMD significantly decreased, the percentage of Th17 subset and Th17/Treg ratio both increased, the percentage of Treg subset obviously decreased, the expression of IL-17A mRNA significantly increased, and the expression of TGF-β mRNA significantly decreased in the ovariectomy model group (all P < 0.05). Compared with the model group, BMD obviously increased, the percentage of Th17 subset and Th17/Treg ratio both decreased, the percentage of Treg subset obviously increased, the expression of IL-17A mRNA significantly decreased, and the expression of TGF-β mRNA significantly increased in the middle dose MZ group and the high dose MZ group (all P < 0. 05). Correlation analyses showed that BMD was positively related to both the serum E2 level and the percentage of Treg subset (P < 0.05), but negatively related to the percentage of Th17 subset (P < 0.05). In addition, the serum E2 level was positively related to the percentage of Treg subset, but obviously negatively related to that of Th17 subset (P < 0.05).</p><p><b>CONCLUSIONS</b>There was correlation between Th17/Treg imbalance and E2 deficient bone loss. MZ could decrease the proportion of Th17 subset, but elevate the proportion of Treg subset in E2 deficient bone loss mice. It could achieve therapeutic effect through adjusting the balance of Th17/Treg in E2 deficient bone loss mice.</p>


Subject(s)
Animals , Female , Humans , Mice , Drugs, Chinese Herbal , Pharmacology , Therapeutic Uses , Estrogens , Metabolism , Flow Cytometry , Interleukin-17 , Mice, Inbred BALB C , Osteoporosis, Postmenopausal , Drug Therapy , RNA, Messenger , Spleen , T-Lymphocyte Subsets , T-Lymphocytes, Helper-Inducer , T-Lymphocytes, Regulatory , Th17 Cells , Transforming Growth Factor beta , Metabolism
2.
Chinese Journal of Integrated Traditional and Western Medicine ; (12): 431-434, 2008.
Article in Chinese | WPRIM | ID: wpr-343960

ABSTRACT

<p><b>OBJECTIVE</b>To investigate the influence of glucocorticoid on phenotype of thymic dendritic cells in mice and to investigate the protective effect of Yougui Pill (YGP) on it.</p><p><b>METHODS</b>BALB/c mice allocated in the group A and B were treated respectively with 10 mg/kg hydrocortisone, alone and combined with 20.81 g/kg YGP. The control mice were treated with normal saline. The changes before and after treatment of I-A(d) and H-2K(d) antigen presentation molecules expression in CD11c(+) and CD45(+) thymic dendritic cells of mice were analyzed by flow cytometry assay, and the expression of intercellular adhesion molecule-1 (ICAM-1) and leukocyte function-associated antigen-1 (LFA-1) mRNA in thymocytes were determined by RT-PCR as well.</p><p><b>RESULTS</b>The percentage of I-A(d+) and H-2K(d+) in CD11c(+) in Group A after treatment was 46.77 +/- 4.32% and 64.34 +/- 7.69% respectively, as compared with those in the control group (65.81 +/- 7.69% and 31.88 +/- 5.01%), the percentage of I-A(d+) was lower and that of H-2K(d+) was higher significantly (all P <0.01). Meantime, the expression of ICAM-1 and LFA-1 in thymocyte in Group A (30.11 +/- 2.51% and 30.40 +/- 3.77%) was significantly lower than that in the control group (46.35 +/- 3.34% and 47.28 +/- 2.91%) respectively (P <0.01). Changes in Group B showed that treated by hydrocortisone in combination with YGP, the above-mentioned hydrocortisone-induced changes could be obviously reversed, the outcome of CD11c(+) I-A(d+) was 54.19 +/- 5.08%, ICAM-1 33.97 +/- 2.04% and LFA-1 34.80 +/- 2.92%, the difference between the two treated groups in these indexes all showed statistical significance (P <0.05).</p><p><b>CONCLUSION</b>Glucocorticoidcan inhibit the expression of major histocompatibility complex class II antigen molecule, but promote the expression of major histocompatibility complex class I in CD11c(+) and CD45(+) dendritic cells, down-regulate ICAM-1 and LFA-1 transcription, while the tonifying yang recipe, YGP, has a dominant protective effect against the above actions of glucocorticoid.</p>


Subject(s)
Animals , Mice , CD11c Antigen , Metabolism , Dendritic Cells , Cell Biology , Allergy and Immunology , Drugs, Chinese Herbal , Pharmacology , H-2 Antigens , Metabolism , Histocompatibility Antigens Class II , Metabolism , Hydrocortisone , Toxicity , Intercellular Adhesion Molecule-1 , Metabolism , Leukocyte Common Antigens , Metabolism , Lymphocyte Function-Associated Antigen-1 , Metabolism , Mice, Inbred BALB C , Phenotype , Protective Agents , Pharmacology , Thymus Gland , Cell Biology , Allergy and Immunology
SELECTION OF CITATIONS
SEARCH DETAIL